Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 9 de 9
Filter
2.
Lancet Glob Health ; 10(1): e114-e123, 2022 01.
Article in English | MEDLINE | ID: covidwho-1630866

ABSTRACT

BACKGROUND: Sierra Leone's child and maternal mortality rates are among the highest in the world. However, little is known about the causes of premature mortality in the country. To rectify this, the Ministry of Health and Sanitation of Sierra Leone launched the Sierra Leone Sample Registration System (SL-SRS) of births and deaths. Here, we report cause-specific mortality from the first SL-SRS round, representing deaths from 2018 to 2020. METHODS: The Countrywide Mortality Surveillance for Action platform established the SL-SRS, which involved conducting electronic verbal autopsies in 678 randomly selected villages and urban blocks throughout the country. 61 surveyors, in teams of four or five, enrolled people and ascertained deaths of individuals younger than 70 years in 2019-20, capturing verbal autopsies on deaths from 2018 to 2020. Centrally, two trained physicians independently assigned causes of death according to the International Classification of Diseases (tenth edition). SL-SRS death proportions were applied to 5-year mortality averages from the UN World Population Prospects (2019) to derive cause-specific death totals and risks of death nationally and in four Sierra Leone regions, with comparisons made with the Western region where Freetown, the capital, is located. We compared SL-SRS results with the cause-specific mortality estimates for Sierra Leone in the 2019 WHO Global Health Estimates. FINDINGS: Between Sept 1, 2019, and Dec 15, 2020, we enrolled 343 000 people and ascertained 8374 deaths of individuals younger than 70 years. Malaria was the leading cause of death in children and adults, nationally and in each region, representing 22% of deaths under age 70 years in 2020. Other infectious diseases accounted for an additional 16% of deaths. Overall maternal mortality ratio was 510 deaths per 100 000 livebirths (95% CI 483-538), and neonatal mortality rate was 31·1 deaths per 1000 livebirths (95% CI 30·4-31·8), both among the highest rates in the world. Haemorrhage was the major cause of maternal mortality and birth asphyxia or trauma was the major cause of neonatal mortality. Excess deaths were not detected in the months of 2020 corresponding to the peak of the COVID-19 pandemic. Half of the deaths occurred in rural areas and at home. If the Northern, Eastern, and Southern regions of Sierra Leone had the lower death rates observed in the Western region, about 20 000 deaths (just over a quarter of national total deaths in people younger than 70 years) would have been avoided. WHO model-based data vastly underestimated malaria deaths and some specific causes of injury deaths, and substantially overestimated maternal mortality. INTERPRETATION: Over 60% of individuals in Sierra Leone die prematurely, before age 70 years, most from preventable or treatable causes. Nationally representative mortality surveys such as the SL-SRS are of high value in providing reliable cause-of-death information to set public health priorities and target interventions in low-income countries. FUNDING: Bill & Melinda Gates Foundation, Canadian Institutes of Health Research, Queen Elizabeth Scholarship Program.


Subject(s)
Cause of Death , Mortality, Premature , Adolescent , Adult , Aged , COVID-19 , Child , Child Mortality , Child, Preschool , Female , Humans , Infant , Infant Mortality , Infant, Newborn , Malaria/mortality , Male , Maternal Mortality , Middle Aged , Sierra Leone/epidemiology
3.
Malar J ; 20(1): 339, 2021 Aug 11.
Article in English | MEDLINE | ID: covidwho-1352663

ABSTRACT

BACKGROUND: The COVID-19 pandemic has resulted in unprecedented challenges to health systems worldwide, including the control of non-COVID-19 diseases. Malaria cases and deaths may increase due to the direct and indirect effects of the pandemic in malaria-endemic countries, particularly in sub-Saharan Africa (SSA). This scoping review aims to summarize information on public health-relevant effects of the COVID-19 pandemic on the malaria situation in SSA. METHODS: Review of publications and manuscripts on preprint servers, in peer-reviewed journals and in grey literature documents from 1 December, 2019 to 9 June, 2021. A structured search was conducted on different databases using predefined eligibility criteria for the selection of articles. RESULTS: A total of 51 papers have been included in the analysis. Modelling papers have predicted a significant increase in malaria cases and malaria deaths in SSA due to the effects of the COVID-19 pandemic. Many papers provided potential explanations for expected COVID-19 effects on the malaria burden; these ranged from relevant diagnostical and clinical aspects to reduced access to health care services, impaired availability of curative and preventive commodities and medications, and effects on malaria prevention campaigns. Compared to previous years, fewer country reports provided data on the actual number of malaria cases and deaths in 2020, with mixed results. While highly endemic countries reported evidence of decreased malaria cases in health facilities, low endemic countries reported overall higher numbers of malaria cases and deaths in 2020. CONCLUSIONS: The findings from this review provide evidence for a significant but diverse impact of the COVID-19 pandemic on malaria in SSA. There is the need to further investigate the public health consequences of the COVID-19 pandemic on the malaria burden. Protocol registered on Open Science Framework: https://doi.org/10.17605/OSF.IO/STQ9D.


Subject(s)
COVID-19/epidemiology , Malaria/epidemiology , Public Health , Africa South of the Sahara/epidemiology , COVID-19/diagnosis , Global Health , Humans , Malaria/diagnosis , Malaria/mortality , Malaria/therapy , Pandemics , SARS-CoV-2/isolation & purification
4.
Am J Trop Med Hyg ; 104(6): 1955-1959, 2021 04 23.
Article in English | MEDLINE | ID: covidwho-1278629

ABSTRACT

World Malaria Day 2021 coincides with the 15th anniversary of the United States President's Malaria Initiative (PMI) and follows the first anniversary of the declaration of the coronavirus disease (COVID-19) pandemic. From 2006 to the present, the PMI has led to considerable country-managed progress in malaria prevention, care, and treatment in 24 of the highest-burden countries in sub-Saharan Africa and three countries in the Southeast Asia Greater Mekong subregion. Furthermore, it has contributed to a 29% reduction in malaria cases and a 60% reduction in the death rates in sub-Saharan Africa. In this context of progress, substantial heterogeneity persists within and between countries, such that malaria control programs can seek subnational elimination in some populations but others still experience substantial malaria disease and death. During the COVID-19 pandemic, most malaria programs have shown resilience in delivering prevention campaigns, but many experienced important disruptions in their care and treatment of malaria illness. Confronting the COVID-19 pandemic and building on the progress against malaria will require fortitude, including strengthening the quality and ensuring the safety and resiliency of the existing programs, extending services to those currently not reached, and supporting the people and partners closest to those in need.


Subject(s)
COVID-19/epidemiology , Global Health , Malaria/epidemiology , Malaria/prevention & control , Preventive Health Services , SARS-CoV-2 , Africa South of the Sahara , Child , Child Mortality , Humans , Malaria/mortality , Mosquito Control , United States , World Health Organization
5.
Malar J ; 20(1): 233, 2021 May 24.
Article in English | MEDLINE | ID: covidwho-1241104

ABSTRACT

BACKGROUND: The coronavirus disease 2019 (COVID-19) pandemic has posed a unique challenge to health care systems globally. To curb COVID-19 transmission, mitigation measures such as travel restrictions, border closures, curfews, lockdowns, and social distancing have been implemented. However, these measures may directly and indirectly affect the delivery and utilization of essential health services, including malaria services. The suspension of indoor residual spraying (IRS) and insecticide-treated net (ITN) distribution, shortages of malaria commodities, and reduced demand for health services have hindered the continued delivery of malaria services. The overall goal of this analysis was to describe the trends in malaria incidence and mortality in Zimbabwe prior to and during the pandemic to understand the consequences of COVID-19-related changes in the delivery and utilization of malaria services. METHODS: Monthly data on the number of malaria cases and deaths by district for the period January 2017 to June 2020 were obtained from the national health management information system (HMIS). District-level population data were obtained from the 2012 Census. Malaria incidence per 1000 population and malaria deaths per 100,000 population were calculated for 2017, 2018, 2019, and 2020 and mapped to describe the spatial and temporal variation of malaria at the district level. RESULTS: Compared to the same period in 2017, 2018 and 2019, there was an excess of over 30,000 malaria cases from January to June 2020. The number of malaria deaths recorded in January to June 2020 exceeded the annual totals for 2018 and 2019. District level maps indicated that areas outside high malaria burden provinces experienced higher than expected malaria incidence and mortality, suggesting potential outbreaks. CONCLUSIONS: The observed surge in malaria cases and deaths in January to June 2020 coincided with the onset of COVID-19 in Zimbabwe. While further research is needed to explore possible explanations for the observed trends, prioritizing the continuity of essential malaria services amid the COVID-19 pandemic remains crucial.


Subject(s)
COVID-19/epidemiology , Communicable Disease Control/methods , Malaria/epidemiology , Malaria/mortality , Mosquito Control/methods , COVID-19/mortality , Delivery of Health Care/statistics & numerical data , Female , Humans , Insecticides/administration & dosage , Male , Masks/statistics & numerical data , Physical Distancing , Retrospective Studies , SARS-CoV-2 , Zimbabwe/epidemiology
6.
Lancet Infect Dis ; 21(1): 59-69, 2021 01.
Article in English | MEDLINE | ID: covidwho-1059565

ABSTRACT

BACKGROUND: Substantial progress has been made in reducing the burden of malaria in Africa since 2000, but those gains could be jeopardised if the COVID-19 pandemic affects the availability of key malaria control interventions. The aim of this study was to evaluate plausible effects on malaria incidence and mortality under different levels of disruption to malaria control. METHODS: Using an established set of spatiotemporal Bayesian geostatistical models, we generated geospatial estimates across malaria-endemic African countries of the clinical case incidence and mortality of malaria, incorporating an updated database of parasite rate surveys, insecticide-treated net (ITN) coverage, and effective treatment rates. We established a baseline estimate for the anticipated malaria burden in Africa in the absence of COVID-19-related disruptions, and repeated the analysis for nine hypothetical scenarios in which effective treatment with an antimalarial drug and distribution of ITNs (both through routine channels and mass campaigns) were reduced to varying extents. FINDINGS: We estimated 215·2 (95% uncertainty interval 143·7-311·6) million cases and 386·4 (307·8-497·8) thousand deaths across malaria-endemic African countries in 2020 in our baseline scenario of undisrupted intervention coverage. With greater reductions in access to effective antimalarial drug treatment, our model predicted increasing numbers of cases and deaths: 224·1 (148·7-326·8) million cases and 487·9 (385·3-634·6) thousand deaths with a 25% reduction in antimalarial drug coverage; 233·1 (153·7-342·5) million cases and 597·4 (468·0-784·4) thousand deaths with a 50% reduction; and 242·3 (158·7-358·8) million cases and 715·2 (556·4-947·9) thousand deaths with a 75% reduction. Halting planned 2020 ITN mass distribution campaigns and reducing routine ITN distributions by 25%-75% also increased malaria burden to a total of 230·5 (151·6-343·3) million cases and 411·7 (322·8-545·5) thousand deaths with a 25% reduction; 232·8 (152·3-345·9) million cases and 415·5 (324·3-549·4) thousand deaths with a 50% reduction; and 234·0 (152·9-348·4) million cases and 417·6 (325·5-553·1) thousand deaths with a 75% reduction. When ITN coverage and antimalarial drug coverage were synchronously reduced, malaria burden increased to 240·5 (156·5-358·2) million cases and 520·9 (404·1-691·9) thousand deaths with a 25% reduction; 251·0 (162·2-377·0) million cases and 640·2 (492·0-856·7) thousand deaths with a 50% reduction; and 261·6 (167·7-396·8) million cases and 768·6 (586·1-1038·7) thousand deaths with a 75% reduction. INTERPRETATION: Under pessimistic scenarios, COVID-19-related disruption to malaria control in Africa could almost double malaria mortality in 2020, and potentially lead to even greater increases in subsequent years. To avoid a reversal of two decades of progress against malaria, averting this public health disaster must remain an integrated priority alongside the response to COVID-19. FUNDING: Bill and Melinda Gates Foundation; Channel 7 Telethon Trust, Western Australia.


Subject(s)
COVID-19/epidemiology , Malaria/epidemiology , Malaria/mortality , SARS-CoV-2 , Africa/epidemiology , Antimalarials/therapeutic use , Bayes Theorem , Humans , Incidence , Insecticide-Treated Bednets , Malaria/drug therapy , Malaria/prevention & control , Models, Statistical , Morbidity
8.
Lancet Glob Health ; 8(9): e1132-e1141, 2020 09.
Article in English | MEDLINE | ID: covidwho-641159

ABSTRACT

BACKGROUND: COVID-19 has the potential to cause substantial disruptions to health services, due to cases overburdening the health system or response measures limiting usual programmatic activities. We aimed to quantify the extent to which disruptions to services for HIV, tuberculosis, and malaria in low-income and middle-income countries with high burdens of these diseases could lead to additional loss of life over the next 5 years. METHODS: Assuming a basic reproduction number of 3·0, we constructed four scenarios for possible responses to the COVID-19 pandemic: no action, mitigation for 6 months, suppression for 2 months, or suppression for 1 year. We used established transmission models of HIV, tuberculosis, and malaria to estimate the additional impact on health that could be caused in selected settings, either due to COVID-19 interventions limiting activities, or due to the high demand on the health system due to the COVID-19 pandemic. FINDINGS: In high-burden settings, deaths due to HIV, tuberculosis, and malaria over 5 years could increase by up to 10%, 20%, and 36%, respectively, compared with if there was no COVID-19 pandemic. The greatest impact on HIV was estimated to be from interruption to antiretroviral therapy, which could occur during a period of high health system demand. For tuberculosis, the greatest impact would be from reductions in timely diagnosis and treatment of new cases, which could result from any prolonged period of COVID-19 suppression interventions. The greatest impact on malaria burden could be as a result of interruption of planned net campaigns. These disruptions could lead to a loss of life-years over 5 years that is of the same order of magnitude as the direct impact from COVID-19 in places with a high burden of malaria and large HIV and tuberculosis epidemics. INTERPRETATION: Maintaining the most critical prevention activities and health-care services for HIV, tuberculosis, and malaria could substantially reduce the overall impact of the COVID-19 pandemic. FUNDING: Bill & Melinda Gates Foundation, Wellcome Trust, UK Department for International Development, and Medical Research Council.


Subject(s)
Coronavirus Infections/epidemiology , Developing Countries , HIV Infections/prevention & control , Health Services Accessibility , Malaria/prevention & control , Pandemics , Pneumonia, Viral/epidemiology , Tuberculosis/prevention & control , COVID-19 , HIV Infections/epidemiology , HIV Infections/mortality , Humans , Malaria/epidemiology , Malaria/mortality , Models, Theoretical , Tuberculosis/epidemiology , Tuberculosis/mortality
SELECTION OF CITATIONS
SEARCH DETAIL